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I. INTRODUCTION

Consider a perfectly conducting surface S placed in free space and

illuminated by an incident electromagnetic field. The problem is to find

the surface density J of electric current induced on S. A solution for J

can be obtained by writing the electric field integral equation on S and

then numerically solving this equation by means of the method of moments.

This solution is called an E-field solution. E-field solutions have been

applied to a rectangular bent plate [1], a surface of revolution [11-[5'1

and a surface of arbitrary shape [6].

These E-field solutions are reasonably accurate in the resonance region.

The resonance region is the range of frequencies for which the maximum di-

mension of the surface S is of the order of a wavelength. Unfortunately,

an erroneous change in the slope of the radially directed electric current

density near the center of a conducting circular disk of radius 0.02X was

reported in [5]. Here, X is the wavelength. For the dual problem of the

circular aperture of radius 0.02X in an infinite conducting plane, an er-

roneous change in the slope of the radially directed magnetic current

density appears near the center of the aperture in [7, Fig. 6d]. In the

E-field solution of [5], the erroneous change in the slope of the radially

directed electric current density is more pronounced for the disk of radius

0.002X than for the disk of radius 0.02X.

In general, all the E-field solutions in [1]-[6] begin to lose

accuracy somewhere in the Rayleigh region and become worse as the frequency

decreases. The Rayleigh region [8] is the range of frequencies for which

the maximum dimension of S is much smaller than the wavelength. These E-

field solutions fail in the low frequency portion of the Rayleigh region



L
o 2

as shown by the following reasoning. When the frequency is sufficiently

low, the magnetic vector potential contributions to the elements of the

moment matrix are insignificant compared with the electric scalar poten-

tial contributions. As a result, the magnetic vector potential contri-

butions are lost. The remaining scalar potential contributions depend

only on V • J. Here, V • J is the surface divergence of J. Knowl-
S - S

edge of V • J is not sufficient to determine J. Therefore, the E-field

solutions in [1l]-[61 fail in the low frequency portion of the Rayleigh

region.

It may be possible to obtain reasonably accurate values of J in the

low frequency portion of the Rayleigh region in the following manner.

Usually, there is at least one frequency that is high enough such that

one of the E-field solutions for J in [11-[6] is accurate but low enough

such that J can be approximated by the first term of its Rayleigh series.

The Rayleigh series for J is its low frequency expansion in non-negative

integer powers of the frequency [8]. If there is such a frequency, the

first term of the Rayleigh series for J can be extracted from one of the

E-field solutions in [1]-[6]. Knowledge of the first term of its Rayleigh

series amounts to knowledge of J in the low frequency portion of the Rayleigh

region.

In many cases, it is of interest to obtain not only J but also the

scattered field. The scattered field is the electromagnetic field pro-

duced by J. In the resonance region, knowledge of J alone is sufficient to

calculate the scattered field because the density q e of electric charge

associated with J can be calculated from the equation of continuity

V • J
q- (1)e -jW
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In (1), w is the angular frequency. However, in the low frequency portion

of the Rayleigh region, knowledge of both J and q e is required in order to

calculate the scattered field because qe can not be accurately calculated

from J by means of (1). Accurate calculation of qe from J by means of (1)

is usually not possible in the low frequency portion of the Rayleigh region,

as shown by the following reasoniig. Usually, J approaches a solenoidal

vector function as the frequency approaches zero. As a result, V • J is
S

so small that it can not be accurately calculated from J. Therefore,

accurate calculation of qe from J by means of (1) is usually not possible

in the low frequency portion of the Rayleigh region. However, qe can be

obtained in the same way that J was obtained in the preceding paragraph.

In the manner described in the previous two paragraphs, any one of

the E-field solutions [11-[61 for J can be extended into the low frequency

portion of the Rayleigh region. The problem of the perfectly conducting

surface S illuminated by an incident electromagnetic field in the low

frequency portion of the Rayleigh region can be solved by other methods.

For instance, the first term in the Rayleigh series for J can be obtained

by solving a magnetostatic problem, and the first term in the Rayleigh

series for q e can be obtained by solving an electrostatic problem. In

most of the literature on low frequency electromagnetic scattering,

Rayleigh series are constructed for the electric and magnetic fields

rather than for the electric current and electric charge. For example,

see [91-[131.

In this paper, a new E-field solution is presented for the electric

current J and the electric charge qe induced on the perfectly conducting

surface S immersed in an incident electromagnetic field. In general, S

. . .. .
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consists of several surfaces that are disjoint from each other. Some of

these surfaces may be open and others may be closed. The new E-field

solution is similar to the E-field solutions in [l]-[6] because it is a

moment solution of the electric field integral equation on S. However,

the new E-field solution uses different expansion and testing functions.

In the new E-field solution, the expansion functions consist of two sets

of vector functions. The first set of vector functions is a suitable

basis for expanding the magnetostatic current. The magnetostatic current

is the first term in the Rayleigh series for J. The second set of vector

functions is such that the electric charges associated with them form a

suitable basis for expanding the electrostatic charge. The electrostatic

charge is the first term in the Rayleigh series for q e The testing

functions in the new E-field solution are similar to the expansion func-

tions. These expansion and testing functions render the moment matrix

well-behaved as the frequency approaches zero.

So constructed, the new E-field solution should give accurate values

of J and e throughout both the Rayleigh region and the resonance region.

0.02X and for conducting spheres of radii 10-1X and 0.02X. Each disk is

excited by a plane wave propagating perpendicular to the plane of the disk.

Each sphere is excited by a plane wave. These numerical results agree well

with the known solutions for the electric current and electric charge on a

small disk [141 and a sphere [15, Eq. (6-103)).



II. THE MAGNETOSTATIC CURRENT AND THE ELECTROSTATIC CHARGE

Since some of the expansion functions for the new E-field solution

will form a suitable basis for expanding the magnetostatic current and

the surface divergences of the rest of the expansion functions will form

a suitable basis for expanding the electrostatic charge, it is helpful to

establish integral equations for the magnetostatic current and the electro-

static charge. Such integral equations can be obtained by substituting

Rayleigh series for J and E nc into the electric field integral equation.

The electric field integral equation is [4, Eq. (12)]

I E (J) Einc onS (2)

S-tan - = --tan

where the subscript tan denotes the component tangent to S. In (2),riis

the impedance of free space, and E(J) is the electric field due to J in

free space. This field is given by [16, Sec. 2.11

E(J) = -jn[k J(r')G(r-')ds' + V J(r'))G(r-r')ds'] (3)

S S

where -jkjr-r'1
G(r-r') = --- (4)4 7T r__- ' I 4

In (3), k is the wave number, ds' is the differential element of area at

r on S, V' • is the surface divergence on S with respect to the coordi-
S

nates of r', and r is the position vector of the point at which E(J) is

evaluated. In (2) Einc is the incident electric field. The incident elec-

tric field is the electric field that would exist if S were absent.

The Rayleigh series for J is

=0 knj(n) (5)
n-0

...... ....



6

(n)where J is independent of k. It is assumed that the surface S on

which J resides is the union of Q surfaces S1. S, ... SQ which are

disjoint from each other.

Q
s = Sq (6)

q=l

In (6), denotes union. The surface S may be either open or closed.
q

If S is closed, then it has no edges. If S is open, it has an edge
q q

called C q It is assumed that C consists of Rq closed contours
q q

{Cr, r = 1,2,... R }.

qR

C (7)
q UCr
C r=l qr(7

Since no line charge can accumulate on C qr J must satisfy

b 0 on Cqr 9 r (8)

where u_ is the unit vector tangent to S and normal to Cr. It follows

from (5) and (8) that

J(O) ub = 0 on Cqr (9)

and

qr = on Cqr10)

The ranges of values of q and r in (9) and (10) are the same as in (8).

Similar boundary conditions hold for J (2), 3 but will not be used.

The Rayleigh series for Einc is

Einc = [ knE(n) (11)

n=0

where E(n) is independent of k. The expansion of G(r-r') in powers of

k is



7

!:00 (-j k) n r n - I

G(r-r') (12)
n=o

In view of (5) and (12), substitution of (3) and (11) into (2) yields

__. .. . jtan

n +l n-m+l
_._()kn  (-J) V sr' n-- • (m (rdsr=')k (r o

4r nn -r e=l _r-r'tann

+ J_ n m (nm V) sff{r~rn-m V .J(m)(r')ds' k n kn(n)(r) on S4"T n=-i m=0 . --- s -- -- n 1=0

(13)

where V is the component of V tangent to S. The operator V is called
s s

the surface gradient on S.

n
Equation (13) implies that the coefficient of k on the left-hand side

of (13) is equal to the coefficient of k on the right-hand side of (13)

for n = -1, 0, 1, 2,.... Setting to zero the coefficient of i/k on the

left-hand side of (13), we obtain

V' •J(O(r')
V r SJ-17r' ) ds' = 0 on S (14)

S
In view of (6), (14) implies that

If 
V '  " J (O ) (r ')  ( q

J V - -- ds' - C (q) on S , q=l,2 .... Q (15)

where {C(O q)} are unknown constants. We set S = S 1 ,i and W = J(O)

in (A-l) and take advantage of (9) to obtain

i sV' " J(O)(r ')ds' = 0, q = 1, 2, " ' 'Qs (16)

S
q

The electric charge associated with j(0)(r,) by means of (1) is called

q (0)(r').



V' J(O)(r') (17)! (0) s - -
q.(,)=

± jW

Now, (15) states that each of the surfaces {S } is charged to a constant
q

potential whereas (16) states that there is no net charge on any of the

surfaces {S I. In this case, it is well-known from potential theory that
q

q (r ) must vanish everywhere on S. As a result, the magnetoslatic :iur-

rent J(0) satisfies

'(r') = , on S

Sett[ng the constant wi.th respect to k on one side of (13) equ,1

to the constant on the other side of (13), we obtain

(1)
1i fr q (r' ) ("" ---- , ds' = E (r) on S 0 9)

4Tc s , r-r I --ton -
S

where c0 is the permittivity of free space and q(1) is the electric charge

associated with kJ() by means of (1).

q V(r') = J-jC (20)

In (20), c = 1/(re ) is the speed of light. If
0

V x E ( 0) =0 (21)

(1)
then there is a scalar function (r) such that

E(O) (r) = - \;1 (r) (22'

and, with the help of (6), (19) will reduce to

(1) (1q)
r -r,- ds' = - (r) - C on Sq, q=],2,...Q (23)

S

* where {C(I q )} are unknown constants.
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The following reasoning establishes (21). Substitution of the

Rayleigh series (11) for Einc and the Rayleigh series

,inc k nk(n) (24)

n=0

for the incident magnetic field H inc into the Maxwell equation

V inc = jkn Hinc (25)

gives

knV x E(n) = - knH (26)

n-0 n=l

Equation (21) is a consequence of (26).

(1)
We set S = Sq, = 1, and W = J(1 in (A-l) and take advantage of

(10) to obtain

"J Vs " J(1)(r')ds' = 0 q = 1,2,...Q (27)

Sq

In view of (20), (27) implies that

JJq(l) (r')ds' = 0 ,q= 1,2.... Q (28)
S
q

Now, the auxiliary equation (28) atones for the unknown constants {C(l q )} in

(1)
(23) so that the pair of equations (23) and (28) suffices to determine q

It is evident that q is the electrostatic charge. Accordingly, (23) and

(28) a.e called the electrostatic equations.

Intending to determine the magnetostatic current J(0) we let W

be a differentiable vector function tangent to {S I and integrate over S
q q

the dot product of W with the terms proportional to k on both sides of (13)

to obtain
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j W(r) * A (O)(r)ds + W(r) • V(r)ds =(r) E(1 )(r)ds, q=1,2,...Q

S S S (29)
q q q

In (29),

(0) J(O)(r') ds' (30)

A (r) = 4w r-r'I

S

and, thanks to (18),

(r')

-' ds' (31)

S

Equation (29) will reduce to an equation for J(0) alone if W(r) is chosen

such that

ff W(r) • V7(r)ds = 0, q=l,2,...Q (32)

S
q

According to (A-i), (32) will be satisfied if

Vs • W 0 on Sq, q=l,2,...Q (33)

and

W • 0 on C qr, =1,2, Rq (34)

If (33) is true, then, according to (B-1), there is a scalar function

u(r) such that

W(r) = n x 7 u(r) on S q, q=1, 2,...Q (35)

where n is the unit vector normal to S. If (34) is also true, then u(r)

must satisfy

u(r) = Uqr on Cqr r = l,2,.. Rq (36)

where {U qr are unknown constants.

• qr
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In view of (32), substitution of (35) into the right-hand side

of (29) yields

i J W(r) A(0) r)ds =- (n x Vsu(r)) E (r)ds, q=l,2 ....Q (37)

S S
q q

Application of (C-1) to the integral on the right-hand side of (37) and

subsequent use of (36) give

j W •_ = -1 f u(V E E) nds

S S
q q

i q Ur [ E(1) u d, q=1,2, .. Q (38)

r=l jj f
C
qr

In (38), uz is the unit vector tangent to the contour C qr. A right-handed

screw would advance in the direction of n when turned in the direction of u.

It is evident from (26) that

V x E( I) = - J H(0 )  (39)

Application of Stokes' theorem [17, Eq. (42) on p. 489] to the integral

over C in (38), subsequent use of (39), and division of both sides ofqr

(38) by j give

) A 0 (0 )  n ds - •f HuH n ds, q=1,2 .. .Q
- - - r=l qr - -

Sq qS Sqr (40)

In (40), Sqr is a cap surface over the contour C qr. On Sqr n is the unit

vector normal to Sr. The direction of n on S is related to the direction
qr qr
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of u in (38) by the right-hand rule stated prior to (39).

Equations (35), (C-I), and (36) transform the left-hand side

of (40) to

- un *7 × A(O)ds + R q U A (0)  ud

_ _ r=] qr j; -- -
C

q (I

Stokes' theorem f17, Eq. (42) on p. 48()I transforms the above expression

to

n ,.< A(O)ds + IT n V ' ds
- -= qr j -  

-

S Sq gr

Therefore, (40) becomes

, (0) (0) R (0) (
I! u(n - V x A + n _H )ds = 7q U (n A 0+ n * H )ds,

j, -- - r= qr --SS
q qr q=l,2,...Q (41)

In (41), u is any differentiable scalar function that reduces to the arbi-

trary constant U on the contour C for r = 1,2,...Rq. Now, (41) can be
qr qr q

valid for all such functions u only if

n / *A(n )  H(0) 2- )
- -A 0 - T " on , .=- ,. .Q (L2)

- ... " q=1,2 . Q
A.d ds,3

S 5' q
qr qr

(0)
Since A 1s given by (3n), the pair of oquations (42) and (43)

helps to determine I( ) . Eqti;tions (q) and (18) state that there is no

electric change associated with (0). We believe that (9), (18), (42). and

(0)
(43 uniquely determine the magnetostatir current .1 . Accordingly, these

equations are called the magnetostatic 4-,ijItiols.
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rEquation (9) is true because no line charge can exist. Equation (18)

is similar to [11, Eq. (1.80)]. Equation (42) is a statement of the well-

known fact that the normal component of the total magnetic field is zero on

a conducting surface [11, Eq. (1.90)]. Equation (43) can be more directly

obtained in the following manner. The line integrals over C of the terms
qr

proportional to k on both sides of (13) are

C C C
qr qr qr

where A(0 ) and C are given by (30) and (31), respectively. Since C is a closedqr

loop, the second integral on the left-hand side of (44) vanishes. Appli-

cation of Stokes' theorem [17, Eq. (42) on p. 489] to the remaining inte-

grals in (44), subsequent use of (39), and multiplication by j give (43).

Equation (43) is not commonplace because, as will be shown, (43) is

necessary only if S is open and is bounded by two or more closed contours
q

{C }. If S is not open, then it is closed and therefore not bounded byqr q

any contour. Consequently, there are no surfaces S so that (43) isqr

absent. If Sq is open and is bounded by one closed contour Cql, then Sq1

is identical to S . As a result, (43) is redundant because it can be obtained
q

by integrating (42) over S . If S is open and is bounded by R closed con-q q q

tours {Cqr, r=1,2,... R } where Rq > 2, then

q q
Rq (45)

q S qr

As a result, the integral of (42) over S is the sum of equations (43)
q

for r-l,2,... R . In this case, (43) must be enforced for R -1 values
q q

of r. At first glance, there appears to be more surface area on the

* "9
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right-hand side of (45) than on the left-hand side. However, portions of

surface area with oppositely directed normal vectors cancel each other on

the right-hand side of (45) so that (45) is true.

III. CONSTRUCTION OF THE NEW E-FIELD SOLUTION

The new E-field solution is a moment solution to the electric field

integral equation (2). The new E-field solution is constructed by expanding

the electric current J as

N N
_m M m + e je (46)
j-l 1 -  j=l k p

me
where J and J. are vector functions that are on S and are tangent to S.

-3 -j
m

According to (6), S consists of the surfaces {S }. For convenience, J.q--

is chosen to be non-trivial only on S for q equal to the single value
q

m(j). Similarly, J is chosen to be non-trivial only on S Furthermore,
* m~j. -Je (j)'

-(0){JT} is a suitable basis for expanding the magnetostatic current J and

{Vs • J.} is a suitable basis for expanding the electrostatic charge q
-

mte m e
Neither J. nor J is allowed to depend on k. The magnitudes of . and J

- --J -j --

should be comparable with each other. Because of (8), J7 must satisfy-1

JT =0 on C ,Nq=m(j) (47)
_j qr r,2 .... R

and Je must satisfy
:-j

1~, 2, . .. N

J 0 on C =e(j) (48)

-j - qr =1,2, .R

In view of (18), J must also satisfy

V (' = 0 on S j=1,2,...N (49)
5 -j MMJ m
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In (46), I and I are unknown coefficients to be determined. In

general, these coefficients will depend on k. The scale factors {kp.} in

(46) are for later convenience. Here, p. is a length so that kp. is

dimensionless. The exact value of p. is not critical. However, the order

of magnitude of p. should be that of a dimension of S. It is evident from

* (46) that the expansion functions for J are

j=l92,... N (50a)

and

{kp.J , j=l,2,... N }  (50b)
J~j e

In analogy with the above expansion functions, testing functions

{-i ' i=1,2.... N (51a)
-- m

and
e{koiW.i, 1=1,2,... Ne } (51b)

i-

are introduced on S. Both WM and are tangent to S. Wm is chosen to

be non-trivial only on S W! is chosen to be non-trivial only on S
m(i) -i

Neither nor Wi is allowed to depend on k. The magnitudes of _ and

should be comparable with each other.

The testing function W' is chosen to satisfy
-1

- = 0 on Cm(i)r, i=1,2,... N (52)
S-4 -b =0 mi, me

and We is chosen to satisfy

-i " ub = 0 on Ce(i),r, i=1,2,... Ne

Moreover, {V * W } should be a suitable set of testing functions for the

electrostatic equation (23). Unfortunately, {Wl.} can not be a suitable

set of testing functions for the magnetostatic equation (42) because (42)
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is a scalar equation. However, taking a cue from (49), we require that

V •Wm(r)= 0 on S i=1,2,... N (54). s ---- re i' '" m

. where V • is the surface divergence with respect to the coordinate of r.
S

Thanks to (54) and (B-i), there are scalar functions {u.} such that

W'.(r) = n x V ui(r) , i = 1, 2,... N (55)s m

Furthermore, {_'i'} are chosen such that if an expansion for J(O) in terms

of {jm} is entered into (40) by means of (30), then enforcement of (40)-3

for W successively equal to each member of {VPi} determines the coefficients

in the expansion for J(0).

The symmetric product of two vector functions is defined to be the

integral of their dot product over S. If (46) is substituted into (3) and

if (3) is subsequently substituted into (2), then the symmetric products of

(2) with each of the testing functions (51) form the matrix equation

menun z merIm
= (56)

.zem zee] -)e = e

In (56), I is the column vector of the coefficients {Im } in (46), and IJ
{,ejmm, em, me,

is the column vector of the coefficients {I.} in (46). Also, Z, Ze , z e
J

and Ze e are submatrices whose ijth elements are given by

Z jk f ds Wi(r) • ds' J (r')G(r-r') (57)

S(i) S(J)

Ze jk 2  f ds We(r) ds' J"(r')G(r-r') (58)

e(i) SM

• - " ";, "-' ' '" " " " ' - ... n { . . ..-j-
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Z me jk2Pj ds _ _ -* j(r')G(r-r')

Sm(i) Se(j)

Sr f ds'(V' je(r'))G(r-r')+ p _ _fd

Sm(i) Se(j)

_eeik30 ds We(r) ds'J' (r)G(r-r(6
0 . - - s-- --

Se(i) Se(j)

+ jkopP. I ds We (r) 7 f ds' (V' * Je(r'))G(r-r')(6.

S e)S e(j)

Moreover, V and V are column vectors whose ith elements are given by

= m W - E w E cd (61)
1 n fl J i -

SmCi)

i ff -i

Se(i)

In the transition from (2) to (57) - (62), it was permissible to omit the

subscript tan because and W are tangent to S.

Thanks to (A-1), (52), and (54), (59) reduces to

Z = j .2  f ds W__(r) - ds' Je (r')G(r-r') (61

Sm(i) Se(j)

Tn view of (53), application of (A-i) to (60) yields

Zij j ik j ds We(r) ds')G(r-r)-z --P i f j J -- ...

S e(i) Se(j)

jkp ds(7 We(r)) f ds'(V' Je(r'))((r-r'

Se(i) e(j) (€"
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Substitution of (55) into (61) and subsequent application of

(C-1) give

R
- ~ ~ in _ fC d 1  mI ) inc- J1 ui(V x E n ds + Q(Ed t (65)

Sm(i) Cm(i),r

It follows from (52) and (55) that u. is constant on C Hence, (65)

becomes

m i r inc
1 (V x E i n ds +- 1 K E _W (66)

i 1 r~Ji ' T1 ir utdtrffil
S(i) Cm(i),r

where K is the value of u on C m),r" Application of Stokes' theorem

to the line integral in (66) gives

-  u(VxE • nds+ .ff n- ×VxE ds (67)
Sm(i) Sm(i),r

Equation (25) reduces (67) to

Vm ' Jk u i(Hinc n)ds -jk Kir HJ inc
i  irf nds (68)

S s(i),rMM i)),

It is evident from (55) and (61) that addition of a constant to u

shoud nt afectthevale o Addition of a constant to u1 does notshoud no afect he alueof i.m

affect the value (68) of Vm because, according to (45),

R M

(J S ()r(69)m(i) rl m(i),r

If some linear combination of the {u I were equal to a constant, then the

corresponding linear combination of the {Ui} of (55) would be zero. In this
-i

case, the matrix of the superscripted Z's on the left-hand side of (56) would
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be singular. To avoid a singular matrix, the {u.) should be chosen so that

no linear combination of them is equal to a constant.

Construction of the new E-field solution is now complete. The new

E-field solution for J is given by (46) where the coefficients {I} and {Ie}-- j

are the elements of the column vectors Im and Ie that satisfy (56). The

ijth elements of the submatrices Zmm, Zem , Ze , and Zee in (56) are given by

(57), (58), (63), and (64), respectively. The ith elements of the column

vectors V and Ve in (56) are given by (68) and (62), respectively.

IV. LOW FREQUENCY BEHAVIOR OF THE NEW E-FIELD SOLUTION

mm eeIf the wave number k is sufficiently small, the elements of Zm , Z

- em me;M, and V in (56) are proportional to k whereas the elements of Z and Zm

are proportional to k . As a result, (56) is well approximated by the pair

of equations

Z mmo ro (70)

eeo -e -+eo
z I ~V (71)

mm -mo eeo -'eo
whenever k is sufficiently small. Here, Z ° , Vo, Ze , and V are the

low frequency limits of Z and Ve, respectively. From (57),

(68), (64), and (62), we obtain

ii = jk ds W(r) • ds' 4(r') (72)
Sm(i) Sn(J)

R

V - jk _ .(H n)ds -jk K r .0 H n ds (73)

S ir=l SMM(1 Sm(i) ,r



1
20

eeo je(r)
- JkoP J ds(Vs  W(r) ds' -4 -r' (74)

S S
e(i) e(j)

veo kpif e (0)
S-- H Wi  • E ds. (75)

Se(i)

E(0) (0)
where _E and It have been extracted from the right-hand sides of (11)

and (24), respectively.

Later in this Section, it is shown that (70) is the matrix equation

that appears in a moment solution for the magnetostatic current J . It

is also shown that (71) is the matrix equation that appears in a moment

solution for the electrostatic charge q(1 Presumably, the matrix equations

for the magnetostatic current and the electrostatic charge can be solved

easily. If this is true, then the matrix equations (70) and (71) can be

solved easily. Hence, the matrix equation (56) can be solved easily when the

frequency is low, and the solution wil.1 tend to give :he magnetostatic cur-

rent and the electrostatic charge.

A moment solution for the magnetostatic current J(O) is now con-

structed. The matrix equation that appears in this solution will be (70).

In view of (30), (40) is an equation for J(0) . Upon substitution of jkw

for W and m(l) for q, (40) becomes

jk fJ A ds = jk JJ • ( nds

S(i) M(i)

iR

-jk Kir H( o )  n ds i=,2 ... N (76)
r= 1 - -- r.

where u is a scalar function that satisfies (55) and Kir is the value

of u on Cm),r If the expansion
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N
(0) mom

= I.J. (77)
j =1 

J -j

is inserted into (30) and if (30) is substituted into (76), then equa-

tions (76) will form the matrix equation

zrmo rO _- ro (78)

- Here, Pmo is the column vector of coefficients {Im ° } in (77). In (78), the
J

elements of Z and r are given by (72) and (73), respectively. As

expected, the matrix equation (78) for Imo is the same as the matrix equa-

tion (70) for I

A moment solution for the electrostatic charge q(1) is now con-

structed. The matrix equation that appears in this solution will be (71).

Substitution of the expansion

Ne
q (r y jeo pj(V' Je(r')) (79)

-j I -3

into the electrostatic equation (23) and integration of the product of

(23) with -(kpi/q)Vs .W? over S produces1-1 e(i)

N e' Je(r

-JkP. Y Ij. PJ ds(V s  W(r)) ds' 4 r-r11j= j s __ sr

e(i) e(j)

kp1  f 1(r) V we(r) ds
-- s -1-

S(i)

+ _ _• rr W (r)ds, i=1,2,...N (80)rls -- - 'e

Se(i)

e (I



4

22

Thanks to (53) and the divergence theorem [17, Eq. (42) on p. 503], the

second integral on the right-hand side of (80) vanishes. Next, (A-i) is

applied to the first integral on the right-hand side of (80), and then (22)

. is used to replace the resulting V-  by -E(0 ). In view of these con-

siderations, equations (80) form the matrix equation

eeo -"eo -eo
Z I =V (81)

Here, I is the column vector of the coefficients (I in (79). In
3

(81), the elements of Zee° and Veo are given by (74) and (75), respectively.

As expected, the matrix equation (81) for I is the same as the matrix equa-

tion (71) for Ie.

V. APPLICATION TO A SURFACE OF REVOLUTION

If the surface S is a surface of revolution, suitable expar,3ion

functions {J } and {kp.J7} for the new E-field solution can br :btr'..Id

by taking linear combinaLions of the expansion functions fJ and {Jq}

defined by [5, Eqs. (2) and (3)]

t T (t) eJn j=l,2,... P-2
ii et (82)--nJ ut p [n=O,_+l,_+2,.. "  82

P (t),2,...P-i
U ein (83)

-nj -:4p [jl±..

Here, t is the arc length along the generating curve of S, and * is the
azimuthal angle. t and 0 are orthogonal coordinates on S. u and u are

unit vectors in the t and 0 directions, respectively. Assuming that

t1,t2 ...t; are points on the generating curve, T (t) is the triangle func- 7

"-::'-.-. . .. tP "
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tion which begins at t , peaks at tj+ I , and ends at t+ 2. p is the dis-

4 tance from the axis about which the generating curve is rotated. P (t)

is the unit pulse function whose domain extends from t. to t • is
j j+l*

* the value of p at the center of the domain of P (t).

To indicate dependence on n, the expansion functions for the new

. E-field solution for a surface of revolution are called {m. and {kP e
-nj j-nj

instead of and {kp Je. Similarly, the testing functions for the new

E-field solution are called {Wm } and {kPWe I} instead of {_e'} and kPW e}.
-ii i-ni - -

The superscript m stands for magnetostatic, and the superscript e stands

for electrostatic. In [5], the testing functions are the complex conjugates

of the expansion functions. Accordingly, the testing functions for the new

E-field solution are chosen to be the complex conjugates of the expansion

functions for the new E-field solution.

UP, = 3M* (84)
n -ni

e e*

kpW i kpi i (85)

Here, * denotes complex conjugate.

in em
Since Jm. and kp.J. are linear combinations of (82) and (83), Jm--nJ i-nj -ni

e jn4
and kp J enn are proportional to e n

. It can be shown that the field due to

any electric current proportional to ein is also proportional to emn . Hence,

the symmetric products of the fields due to and kp J ewith U and kp
-ni-nj -pi

are zero for all values of p except p=n. As a result, the matrix equation (56)

disintegrates into many "smaller" matrix equations, one for each value of n in (82).

mm me 41 [ l
z z it vn n .-. n I 1 n.

II =n=O,±l,±2.... (86)
em Le -1

n n JL n

L J L 2



24

According to (49), the surface divergence of Jj must vanish.

This means that -Jm can not have any electric charge associated with

m
it. In order to construct J as a linear combination of the functions

in (82) and (83), we have to know the electric charges associated with

these functions. The surface density of charge associated with J
-nj

t
is called qn and is given by the equation of continuity.

q t iV jt. (87)
qnj -jw s -ni

Since-J is given by (82) and V I is given by (B-3), (87) becomes
-ni t 1 P. (t) P (t

qn =  (!- j+lt jnO (88)

where A is the distance from t . to tj+ I . The surface density q njof

electric charge associated with JO. is given byI -n3

n _- V • . (89)
-jw s -'

which becomes

qn' -n P (t)e jn O (90)
ni Wp p i

Noting that A has no electric charge associated with it, we-Oj

choose

_jm = j, Jfl,2,...P-I (91)

and

kp = _j , j=1,2,...P-2 (92)

From (84) and (85), the correpo.nding testing functions are

WT = ,O i=1,2,...P-I (93)

0 -0 1kPi~ W e i = ' i=1,2,...P-2 (94)

-Lo ° . .
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Thus, for n=0, the expansion and testing functions for the new E-field

solution are the same as those used in [5].

e
Equations (92) and (82) imply that J is proportional to 1/k.

e eHowever, Je. is not allowed to depend on k in Section III. If Je. de-nj -n3

pended on k, it might be difficult to obtain an accurate numerical solu-

tion to (86) because (86) would not be properly scaled. On the other
em Zme

hand, Z. and Z0 are exactly zero so that, for nff0, (86) separates into

two matrix equations, one involving ZI0, the other involving Zee. In

this case, it does not matter how Z ee is scaled with respect to Z
00

In order to calculate V0 from (68), a scalar function u0i must

be found such that

W ni = X (95)

If

n= X u (96)

*- then it is not difficult to show that (95) is satisfied by

0 t < ti

ti - t
u0i - t t (97)

01 Pj

Ai
Pi t i+l

Equation (68) was derived to show that V is proportional to k for small k.

inc
If E is such that the integration on the right-hand side of (61) yields

an expression that is explicitly proportional to k for small k, then (68)

is not necessary. As is evident from [5, Eq. (80)], such is the case for

n-O and for an obliquely incident plane wave. Thus, for plane wave inci-

dence, the matrix equation [5, Eq. (6)] is adequate for nf0.
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If n # 0, it is evident from (88) and (90) that

t + a(
qnj +anj nj - n,j+l 0 (98)

where

a (99)nj nA(

Therefore, it is suitable to choose

jm. r + a - a )j=1,2 ...P-2 (100)

-nj -n nj--nj n,j+l -n,j+l ' n=+l,+2,...

The {kp.Je} are defined by

kie j=1,2,...P- (101)
,ko _i = k ' , =+1,+2,....

From (84) and (85), the corresponding testing functions are

- a .4)~ a Fi=I1, 2,.. .P-2
mt*+(1 

2

ni -i n1--1 n,i+l-n,i+l , (102)

and Lnl±l2,±2,...

= kpi ,2,. .(0
14 1 iz-ni

In view of (96), it is not difficult to show that

i n x (104)
-ni - s Uni

where

i no(t) e (105)
ni = n

Since the expansion and testing functions for the new E-field

solution are linear combinations of the expansion and testing functions

used in [5], the elements of the superscripted Z 's in (86) are linear

combinations of the elements of the superscripted Z 's in [5, Eq. (6)].

Of course, all scalar potential contributions to the elements of the ]



27

superscripted Z 's in [5, Eq. (6)] must be suppressed from the calculationn

element oZ", em d meof the elements of Z' , Ze  and Zn Otherwise, severe roundoff error

would occur for small k. Because the elements of the superscripted Z 's
n

2
" in (86) become proportional to k or k when k is small, machine underflows

will occur if k is too small. In an attempt to avoid underflows, the ele-

1 2
,*. ments of the superscripted Z's in (86) were divided by (- kAI) . However,

n2 1

this normalization only decreases the value of k at which underflows begin

*to occur. Unfortunately, as k approaches zero, the increasing disparity

between the real and imaginary parts of the matrix elements eventually

exceeds the dynamic range of the computer.

VI. NUMERICAL RESULTS

The new E-field solution was used to calculate the electric cur-

rent J and electric charge qe induced by a plane wave axially incident on

a conducting circular disk of radius 0.002X and a conducting sphere of

radius 0.002A. The magnitudes of these currents and charges are presented

here. The new E-field solution was also used to obtain the current and

-15
charge on a conducting disk of radius 10 X and a conducting sphere of

radius 10-15 . These currents and charges are not shown here. It suf-

fices to state that they agreed well with the known currents and charges

on a small disk [14] and a sphere [15, Eq. (6-103)]. The new E-field

solution could not be calculated for disks and spheres of radii consider-

ably less than 10 5% because of machine underflows.

The conducting disk lies in the xy plane. On the disk, the

- inc Hinc)incident field (E , H )is given by
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Ein c =u T (106)

H inc = - (107)

where u and u are the unit vectors in the x and y directions, respec---x -y/

* tively. In this case, J can be expressed as

J= Jt cos 4 + uJ sin (108)

where J and J are dimensionless functions of t. In (108), t is the

distance from the center of the disk, 0 is the azimuthal angle, u is--t

the unit vector in the radial direction, and u is the unit vector

perpendicular to ut. The electric charge q can be expressed as

q e cos4) (109)qe c

where c is the speed of light and q is a dimensionless function of t.

Figure 1 shows Iiti on the disk of radius 0.002X. The symbols

x represent the new E-field solution for J ti. These symbols are

plotted at the center of the disk, at the peaks of the triangle func-

* tions {T (t)} in (82), and at the rim of the disk. The solid curve is

*the known solution for IJ 1. This curve was obtained by calculating the:t"

known solution at 31 points equally spaced in t and by drawing straight

lines between them. The first of these points is at the center of the

disk. The last point is at the rim of the disk.

Figure 2 shows 1iJI on the disk. The symboi x represent the

new E-field solution for iJ1. These symbols are plotted at the centers

of the pulse functions {P (t)} in (83). The solid curve is the known

solution for IJ,1. This curve was obtained by calculating the known

solution at all of the 31 points mentioned in the previous paragraph

except the point at the rim and by drawing straight lines between them.
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0.04--I I I

lid
0.021

00.001 0.00

Fig. 1. 11t on the conducting circular disk of radius
0.002A. The symbols x represent the new E-field
solution. The solid curve is the known solution.
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0.06 X
I I III

0.04

0--1

0.02

I I

0 0.001t 0.002

Fig. 2. IJOI on the conducting circular disk of radius 0.002a.
The symbols x represent the new E-field solution.
The solid curve is the known solution.

I
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The known solution for IJ approaches infinity as the reciprocal of

the square root of the distance from the rim. Figure 3 shows IqI on the

disk in the same way that Fig. 2 shows IJ I.

In Fig. 2, the x nearest the rim is 28% higher than the known

value of J1 at the corresponding point. In Fig. 3, the x nearest

the rim is 36% higher than the known value of Jqj at the corresponding

point. These kinds of errors are to be expected when pulses are used

to expand a function that goes to infinity as the reciprocal of the

square root of the distance from an edge [18].

incAccording to (107), H has no component normal to the disk.

Therefore, the magnetostatic current J(O) vanishes so that the electric

current J reduces to MM for small k. In Section IV, it was shown
(0)

that the new E-field solution for J approaches J as k approaches

zero. It was not shown that if J(O) vanishes, then the new E-field

solution will reduce to kJ . The good agreement of the new E-field

solution for J with the known J in Figs. 1 and 2 is fortunate. It is

a pleasure to state that the new E-field solution for J agreed just as

well with the known J on the disk of radius 101 5X.

The conducting sphere is placed at the origin and is illuminated

by the incident field

inc jkz(
E u e (110)

H inc U e jkz  (111)

The electric current 3 and electric charge q e induced on the sphere are

expressed by (108) and (109), respectively. For the sphere of radius

0.002X, Fig. 4 shows 1it1, Fig. 5 shows IJ 1, and Fig. 6 shows Jql. On
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14-

12

I0

0 0.0 .0

Fig. 3. jqj on the conducting circular disk of radius 0.002A.
The symbols x represent the new E-field solution. The
solid curve is the known solution.
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IJtI INCIDENT WAVE

0.004X

0.5-t 0

0:

0 0.001 t 0.002

-rX

Fig. 4. IJ ti on the conducting sphere of radius 0.002X. The
symbols x represent the new E-field solution. The
solid curve is the known solution.
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INCIDENT WAVE

1.0 (.004X

t 0~

0 0.00, 0.002
7rX

Fig. 5. Iji on the conducting sphere of radius 0.002X. The
symbols x represent the new E-field solution. The
solid curve is the known solution.
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3-

jqj INCIDENT WAVE

2
0.004X

t =0

00.001 t0.002
ir~

Fig. 6. jqj on the conducting sphere of radius 0.002X. The
symbols x represent the new E-field solution. The
solid curve is the known solution.
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this sphere, t is zero at (x=y0O, z=-O.002X) and is O.OO2rX at

(x-Y0O, z=0.002X). As in Figs. 1, 2, and 3, the symbols x in each

* of Figs. 4, 5, and 6 represent the new E-field solution and the solid

* curve is the known solution.
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APPENDIX A

In Appendix A, it is shown that

J W.- V ds = fJ 4(V * W)ds + j r W 4d (A-1)

S S C

where S is a finite surface, ds is the differential element of area,

V • is the surface divergence on S, 4 is a differentiable scalar func-s

* tion defined in 3-dimensional space, and W is a differentiable vector

*function defined on S. Furthermore, W is tangent to S. The surface S

may be either open or closed. If S is closed, then the second term on

* the right-hand side of (A-i) is to be omitted. If S is open, then S

has an edge. This edge consists of one or more closed contours and is

called C. In the second term on the right-hand side of (A-1), dR is

the differential element of length along C and !!b is a unit vector tan-

gent to S and normal to C. For definiteness j is taken to point away

from S.

The following reasoning is used to show that (A-l) is true.

Because W is tangent to S, the divergence theorem 117, Eq. (42) on

p. 5031 for *W is

0 S closed

IJ Vs (fW)ds (A-2)

S f O(W " )dt ' S open

[C

From [17, Eq. (18) on p. 501],

V ( W) - - [v- (h2OWI) + -- (hlOW2)] (A-3)
sh1 h2 2 1 2
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where (vl, v2) are orthogonal curvilinear coordinates on S, (hI, h2) are

the corresponding metrical coefficients, and (WI, W2) are, respectively,

. the components of W in the directions of increasing vI and v2. Dif-

ferentiating the products on the right-hand side of (A-3), we obtain

V • (qw) =,v • w+ w • V (A-4)
S S-- - 5

where

v .w 1 [
s - h h V (h2Wl) + - 2 (hlW2)] (A-5)

1 v v2 1 2

S+ 1 2 (A-6)
s h v ii1 h Dv -2 (6

1 1 2 2

Here, R1 and u2 are, respectively, the unit vectors in the v1 and v2

coordinate directions. According to [17, Eq. (18) on p. 501], the right-

hand side of (A-5) is indeed the surface divergence of W. From [17,

Eq. (17) on p. 5011, the right-hand side of (A-6) is the surface gradient

of 4.

Substitution of (A-4) into (A-2) gives

ff T W * 4 ds - ff 4,(Vs * W)ds + f RW 4)d. (A-7)

S S C

Because V is the component of V tangent to S and because W is

tangent to S,

W V = W • V on S (A-8)

Substitution of (A-8) into (A-7) gives the desired result (A-1).
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APPENDIX B

In Appendix B, it is shown that any differentiable vector func-

tion W(r) which is tangent to a surface S and which has no surface

divergence can be written as

W(r) = n x VsO(r) , onS B-1)

where n is the unit vector normal to S, V is the surface gradient
S

on S, and

(r) = ((r) - f (n' x W(r')) dr' , ron S (B-2)

c

In (B-2), r is the position vector of an arbitrary point on S, c is

any contour on S from r to r, and n' is n evaluated at r'.

The following reasoning is used to show that (B-1) is true.

The surface divergence of W is called V • W and is defined by [17,

Eq. (18) on p. 501]

s *-- hlh2 Vl (h2Wl) + - (hlW2)] (B-3)
s - h1 h23 2 1 2

where (vI , v2) are orthogonal curvilinear coordinates on S, and (hi, h2)

are the corresponding metrical coefficients. Also, WI is the component

of W in the direction of increasing v1 , and W2 is the component of W in

the direction of increasing v2. Since W has no surface divergence,

v (-h2WI) = W v (hlW2) (B-4)
;1 21 v21 2

In view of (B-4), the differential form

hlW dv - h2Wldv (B-5)
1s2 1 2e1 2

is exact. Therefore, there is a scalar function 40(v1, v 2 such that



40

1 2 3v ~~, 2)

,., -h2W I = v (VlV 2  (B-7)

2

From (B-6) and (B-7), we obtain

-W v + 1(B-)
h 2 3v2 h 1 1 2  (B-8

where (ul, u2 ) are, respectively, the unit vectors in the directions

of increasing v1 and v2. If the unit vectors (Ru, R n) form a right-

handed orthogonal system, then (B-8) can be rewritten as

W = n x V (B-9)

where

ul + v -2 (B-10)
Vs= h a1 1 h2 3v2

According to [17, Eq. (17) on page 5011, the right-hand side of (B-10)

is indeed the surface gradient of 0. Hence, (B-9) coincides with (B-i).

It is evident from (B-8) and (B-10) that

V -n xW (B-i)

The desired result (B-2) follows from (B-I).

-7



41

APPENDIX C

It is shown in Appendix C that

Jf (n x V) * E ds if W xf ~ E) * n ds + f VE * u9 )dQ (C-1)

S S C

where S is a finite surface, ds is the differential element of area,

n is the unit vector normal to S, V is the surface gradient on S,
S

is a differentiable scalar function defined on S, and E is a differen-

tiable vector function defined in 3-dimensional space. The surface S

may be either open or closed. If S is closed, then the second term on

the right-hand side of (C-i) is to be omitted. If S is open, then S has

* an edge. This edge consists of one or more closed contours and is

called C. In the second term on the right-hand side of (C-1), is the

unit vector tangent to C and dt is the differential element of length

along C. The direction of n is the direction that a right-handed screw

would advance when turned in the direction of u .

The following reasoning is used to show that (C-1) is true.

Stokes' theorem [17, Eq. (42) on p. 489] for 4E is

0 , S ed

If n - V x (0 E) ds =(C-2)

S f(E. u )dZ , S open

If (v1 , v2 ) are orthogonal coordinates on S and if (u1 , u2, n) form a

right-handed system where (ul, u2) are, respectively, the unit vectors

in the directions of increasing v1 and v2 , then 117, Eq. (166) on p. 4971
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SV )= hh (h (hi eEl)) on S (C-3)

1 h2 av1 2 2 v2 . 1

In (C-3), (hi, h2) are, respectively, the metrical coefficients associ-

ated with v1 and v2, and (E1, E2 ) are, respectively, the components of

E in the u1 and i2 directions. Differentiating the products on the right-

hand side of (C-3), we obtain

n V x m) = (V x E) n + (n x V) E on S (C-4)

where

V + -- (C-5)
s h 1v l h2 3v -2 (C-5)

*" According to [17, Eq. (17) on p. 501], the right-hand side of (C-5) is

indeed the surface gradient of 0.

Substitution of (C-4) into (C-2) gives the desired result (C-I).

* . . *.. *
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